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Ocean circulation driving macro-algal rafting is believed to serve as an impor-
tant mode of dispersal for many marine organisms, leading to predictions on
population-level genetic connectivity and the directionality of effective disper-
sal. Here, we use genome-wide single nucleotide polymorphism data to
investigate whether gene flow directionality in two seahorses (Hippocampus)
and three pipefishes (Syngnathus) follows the predominant ocean circulation
patterns in the Gulf of Mexico and northwestern Atlantic. In addition, we
explore whether gene flow magnitudes are predicted by traits related to
active dispersal ability and habitat preference. We inferred demographic his-
tories of these co-distributed syngnathid species, and coalescent model-based
estimates indicate that gene flowdirectionality is in agreementwith ocean circu-
lation data that predicts eastward and northward macro-algal transport.
However, themagnitude towhich ocean currents influence this pattern appears
strongly dependent on the species-specific traits related to rafting propensity
and habitat preferences. Higher levels of gene flow and stronger directionality
are observed in Hippocampus erectus, Syngnathus floridae and Syngnathus louisia-
nae, which closely associated with the pelagic macro-algae Sargassum spp.,
compared to Hippocampus zosterae and the Syngnathus scovelli/Syngnathus
fuscus sister-species pair, which prefer near shore habitats and areweakly associ-
ated with pelagic Sargassum. This study highlights how the combination of
population genomic inference together with ocean circulation data can help
explain patterns of population structure and diversity in marine ecosystems.
1. Background
Across a diverse range of marine taxa, rafting on macro-algae has been proposed
as a fundamental mode of ‘hitchhiking dispersal’ between coastal regions [1–3].
Macro-algae such as pelagic Sargassum spp. provide the structure needed to sup-
port a drifting ecosystem, in which a diverse community of inhabitants find prey,
seek shelter, develop and may ultimately disperse to distant locations [4–8].
Owing to the positive buoyancy and holopelagic reproductive cycle, the move-
ment of pelagic Sargassum is largely controlled by ocean circulation [9,10]. For
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several marine species, rafting with marine macrophytes (such
as Sargassum spp.) has been invoked as a means of transport
leading to the habitation and connectivity of oceanic
archipelagos [11–13], as well as trans-oceanic dispersal [14–17].

Syngnathids (commonly known as seahorses, sea-dragons
and pipefishes) are generally considered poor swimmers and
are all direct developers that commonly settle in benthic habitat
shortly after birth, limiting planktonic larval dispersal [18].
Rafting dispersal has been hypothesized as the primary
means of transport in these species [6,14,19], as they are
among the most abundant fish groups present in algal rafts
carried by the Gulf Stream current [4,20–22]. Movement by
fishes (and other taxa) to and from Sargassum rafts provides a
mechanism by which they can achieve long-distance transport
by these major ocean currents [20]. If rafting dispersal is the
primary mode of transportation, then ocean circulation direc-
tionality should be consistent with gene flow directionality,
and this correspondence should be stronger in species with
higher rafting propensity. In the western North Atlantic,
mats of pelagic Sargassum algae occur annually (March–July)
within the Gulf of Mexico [5,22]. These mats follow the domi-
nant ocean circulation pattern of the Gulf Stream System (the
Loop Current in the Gulf of Mexico, the Florida Current in
the Straits of Florida and Gulf Stream that traces the eastern
coast of the United States before bending eastwards into the
North Atlantic near Cape Hatteras, North Carolina) [5,9,22].
The Gulf Stream system has existed in its present form since
the closing of the Isthmus of Panama approximately 4 Ma
[23], suggesting consistent eastward gene flow directionality
of rafting individuals within the Gulf and northward gene
flow along the Atlantic coast over many generations.

To inform the general predictions of the hypothesis that raft-
ing propensity and habitat preference can influence gene flow
directionality and magnitude, we first investigate patterns of
ocean circulationbyusingdata fromdrifter trajectories available
at Adrift.org.au. Then, we test this hypothesis using genome-
wide single nucleotide polymorphism (SNP) data from five
partially co-distributed taxaof syngnathids that include twosea-
horses (Hippocampus erectus andHippocampus zosterae) and three
pipefishes (Syngnathus floridae, Syngnathus louisianae and the
Syngnathus scovelli/Syngnathus fuscus sister-species pair),
which representdifferent ecologies, to inferpopulationstructure
and connectivity. The hypothesis that rafting drives dispersal
directionality in the species included in this study carries two
general predictionswith respect tomodel-based parameter esti-
mates of gene flow magnitude and directionality: (i) for taxa
with greater observed rafting propensity (H. erectus, S. floridae
and S. louisianae), estimates of gene flow asymmetries should
follow the currents of the Gulf Stream system; (ii) for taxa with
less propensity for rafting because of ecological constraints
andhabitat preference (H. zosterae, S. scovelli/S. fuscus), themag-
nitude of gene flow should be lower. Hypothesis testing then
involved comparing these predictions with the parameter esti-
mates under the inferred demographic histories of divergence
with asymmetric gene flow given the genome-wide SNP data
from the five focal species.
2. Material and Methods
(a) Oceanic transport estimates
To provide oceanographic context for hypothesized population
structure and gene flow, we used Adrift.org.au, a freely available
tool for tracking the movement of objects drifting at the ocean sur-
face [24]. This method combines empirical data from
approximately 17 000 drifter trajectories deployed throughout the
global ocean from 1979 to 2013 [25] to determine the probability
of an object moving from a given 1° latitude × 1° longitude location
toanyother 1° × 1° locationacross the rest of the oceanat two-month
intervals [24]. This approach produces a wide-range of transport
possibilities that are not specifically tied to seasonality or particular
years, making it particularly useful for examining questions of his-
torical biogeography [17]. Approximately half of the trajectories are
of drifters drogued at 15 m depth, to minimize the impact of winds
blowing across the top of the float; the other half are missing these
drogues [24]. Thus, the predicted pathways generated by this
approach are appropriate for tracking the movement of algal rafts
under the combined effects of ocean currents and winds [10].

In our analyses, we examined transport from six sites where
genetic sampling occurred: (i) the western Gulf of Mexico
(WGM), 28°N, 97°W; (ii) the northern Gulf of Mexico (NGM),
30°N, 88°W; (iii) the eastern Gulf of Mexico (EGM), 27°N, 83°W;
(iv) the Florida Keys (FK), 25°N, 80°W; (v) the southeast Atlantic
coast of Florida (SAC) 27°N, 80°W; and (vi) the northeast Atlantic
coast of Virginia (NAC), 37°N, 75°W.We determined the cumulat-
ive probability of drifters from each site reaching the surrounding
coastal region every twomonths up to 24 months, a drift time that
is consistent with other studies modelling rafting [17,26]. For each
site, we divided the cumulative probability of drifter transport to
each region by the sum of values across the six regions to generate
a relative index within the study system of which regions were
most likely to receive inputs from each site.

(b) Sampling
In this study, individuals from five species of Syngnathids,H. erectus,
H. zosterae, S. floridae, S. louisianae and the sister-species pair S. sco-
velli/S. fuscus, were collected from 15 sites throughout the Gulf of
Mexico and along theAtlantic coast (figure 1; electronic supplemen-
tary material, table S1, species ranges shown in the electronic
supplementary material, figure S1). Details on sampling, restriction
site associated DNA sequencing (RADseq) library preparation,
sequencing and bioinformatics processing can be found in the elec-
tronic supplementary material, Information S1. Genomic data and
accompanying metadata have been deposited to NCBI with
Bioproject ID PRJNA575862 (accession numbers SAMN12912667-
SAMN12912781) and linked to GEOME (https://geome-db.org/
workbench/project-overview?projectId=212).

(c) Population structure and phylogenetic summaries
To characterize population structure and assign individual geno-
types to putative populations for downstream model-based
demographic inference, we took several exploratory approaches.
To visually summarize the genetic differentiation of individual
genotypes and explore potential population structure, principal
component analyses (PCA) were executed per species (and in
the case for S. scovelli and S. fuscus for both species combined)
using the PCA function in the R package adegenet [27,28]. We
used the sparse non-negative matrix factorization algorithm
(sNMF) integrated in the LEA package [29] to further explore
population structure and the assignment of individuals to puta-
tive populations by inferring ancestry coefficients, representing
the proportions of each individual’s genome that originated
from a given gene pool. sNMF estimates individual ancestry
without inferring independent ancestral gene pools (K ) based
on the assumption of Hardy–Weinberg or linkage equilibrium.
We explored K values ranging from 1 to 10, each with 20 rep-
etitions, and testing four values for the alpha regularization
parameter (1, 10, 100 and 1000). The number of ancestral
populations was determined by using a cross-entropy criterion.
To visually explore the phylogenetic relationships between
populations, we used the program SPLITSTREE [30].

https://geome-db.org/workbench/project-overview?projectId=212
https://geome-db.org/workbench/project-overview?projectId=212
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Figure 1. Population genetic analyses for H. erectus, H. zosterae, S. floridae, S. louisianae and the S. scovelli/S. fuscus sister-species pair. Upper row: sampling
locations for each of the species. Second row: evolutionary network computed by SPLITSTREE analyses. Third row: PCA plot. Bottom row: barplot from sNMF analyses,
in which each bar represents one individual and grey shading represents assignment to ancestral clusters. Sampling regions are indicated by abbreviations and colour
code. WGM, Western Gulf of Mexico; NGM, Northern Gulf of Mexico; EGM, Eastern Gulf of Mexico; FK, Florida Keys; SAC, South Atlantic Coast; NAC, North Atlantic
Coast. (Online version in colour.)
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(d) Inference of gene flow and demographic histories
We explored the extent of corridors and barriers to effective
migration between sampling localities for each species using esti-
mated effective migration surfaces (EEMS) [31]. EEMS uses
deviations from the expected decay of genetic similarity under an
isolation by distance model to highlight geographical regions of
inflated connectivity as well as regions of inflated isolation.
In order to explore potential restrictions to migration without
making any assumptions about individual demes or population
structure,weused the sampling localities to calculate pairwise gen-
etic dissimilarities using the function dist.genpop in the R package
adegenet [27,28]. The EEMS method incorporates isolation-by-dis-
tance as a null-model for the decay of genetic similarity with
increasing geographical distance, and therefore habitat discontinu-
ity that hinders gene flow is expected to result in spatial zones of
inflated isolation. Three independent runs were performed, using
10 million Markov chain Monte Carlo steps and discarding the
first 5 million MCMC steps as burn-in. Proposal variances were
tuned as suggested in the documentation, using 1 and 2 formSeed-
sProposalS2 andmEffctProposalS2, respectively, and 2 and 0.02 for
qSeedsProposalS2 and qEffctProposalS2, respectively.

To obtain estimates of potentially asymmetric gene flow based
on a historic demographic model, we used generalized phylo-
genetic coalescent sampler (G-PhoCS), which applies a full
Bayesian coalescent-basedmethod to estimate effective population
sizes, divergence times and continuous bi-directional rates of
migration [32]. To choose an appropriate number of populations
and assign individual genotypes to putative populations, we
used the exploratory analyses of sNMF and PCA (figure 1),
whereas population topologieswere informed by the phylogenetic
inferences obtained by maximum likelihood using SPLITSTREE
(figure 1). We include gene flow parameters between any two of
the neighbouring populations in each model, with the exception
of gene flow to and from the Florida population in S. floridae
(because of the long branch length of this population, see Results
and Discussion) and gene flow between the sister species S.
fuscus and S. scovelli. We performed four independent runs, each
of 500 000 MCMC steps, sampling every 100 generations with
α = 1.0 and β = 1000.0 for the gamma distribution used for all
priors of τ and θ parameters, and α = 1.0 and β = 0.00001 for the
gamma distribution used for migration rates. Runs for a single
species were assessed and combined in TRACER v.1.6 [33]. We
used a mutation rate of 1 × 10−9 site yr−1 to transform estimates
of θ and τ to Ne and divergence time, respectively.
3. Results
(a) Oceanic transport estimates
Estimates of oceanic transport from sample sites indicate the
prevalence of west to east movement across the Gulf of
Mexico and northeastward transport into the Atlantic Ocean
(figure 2). While large-scale movements are apparently likely,
successful dispersal from one region to another may be less
common. Over the 2 years of tracking, local retention tended
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to predominate, with probabilities of remaining within the
region of origin ranging from 61% (EGM) to 100% (NAC).
When cross-region transport was observed, west to east con-
nectivity was predominant; the only site from which
westward transport to coastal regions was likely was from
NGM to WGM (0.3%) (figure 2, electronic supplementary
material, table S2). All other sites contributed to each of the
coastal regions ‘downstream’, although the magnitude of
potential connectivity did not necessarily scale linearly with
geographical distance. For instance, WGM, NGM and EGM
were each predicted to contribute more to NAC than either
FK or SAC (electronic supplementary material, table S2).
(b) Sequencing
Across all sampled individuals, we obtained a total of 427
253 311 single-end reads generated on the Illumina HiSeq
platform. A total number of sequence reads per sample
ranged from 1 098 313 (H. erectus) to 5 486 466 (H. zosterae),
and the total number of reads per species ranged from 73
835 708 (H. erectus) to 128 387 912 (S. scovelli/S. fuscus).
Total numbers, as well as minimum and maximum number
of reads per individual per species are summarized in the
electronic supplementary material, table S3. The number of
loci per species varied from 1349 to 8035 and the number
of SNPs varied from 8047 to 29 489 (electronic supplementary
material, table S3).

(c) Population structure and phylogenetic summaries
Based on the PCA and SPLITSTREE analyses, we identified puta-
tive topologies for three population models (H. erectus,
H. zosterae, S. louisianae and the S. scovelli/S. fuscus sister-
species pair) and a four populationmodel (S. floridae) (figure 1).
The sNMF results further corroborated our chosen population
assignments (figure 1). Based on this information, we con-
structed historical models of population splitting and
migration for each species to be used for downstream coalesc-
ent model-based inferences of demographic and evolutionary
histories (models used for demographic analyses shown in
figure 4).

Unlike the two seahorse species, which show the genetic
similarity between individuals sampled from the tropical
FK and the EGM, the FK population of the pipefish S. floridae
shows a pronounced divergence from all other warm-
temperate/temperate populations of S. floridae, ranging from
the WGM to NAC. Apart from this strong differentiation of
the FK population, the strongest differentiation in S. floridae is
found between populations from WGM and populations
further to the east. A similar pattern, with a strong differen-
tiation of the WGM population, is observed in H. zosterae.
However, for H. erectus (for which no WGM population was
sampled) and the S. scovelli/S. fuscus sister-species pair, the
strongest differentiation is found between populations from
NAC and populations further to the south. Differentiation in
S. louisianae is less profound, although the populations on the
east side of the Florida peninsula are somewhat differentiated
from the seemingly more admixed populations west of the
Florida peninsula.

(d) Gene flow and demographic analyses
The effective migration surfaces obtained from EEMS corro-
borate population structure identified with sNMF and PCA.
For S. floridae the FK population was excluded, as was the
case for the demographic analyses, based on the strong diver-
gence from all other sampling localities. Main barriers were
found between the most strongly diverged populations for
each species (figure 3, left side panels). In addition, the results
suggest relatively higher levels of gene flow between NAC
(H. erectus, S. fuscus), EGM (H. erectus, S. scovelli) and the
WGM-NGM (S. louisianae, S. scovelli) sampling localities.
The population genetic diversity obtained from EEMS
showed the highest levels of diversity associated with areas
in the central part of its sampled range (figure 3, right side
panels). By contrast, lower levels of diversity were found in
peripheral areas.

Estimated numbers of migrants per generation from the
G-PhoCS analyses indicate that migration in H. zosterae and
S. scovelli is generally low (less than 0.5 migrant generation−1)
(figure 4, electronic supplementary material, table S4).
However, in the other three taxa, we detect higher levels
of asymmetric gene flow. Gene flow from SAC to NAC
(H. erectus) and NGM-EGM to NAC (S. floridae) is estimated
to be 70–80 times stronger than gene flow in the opposite
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direction. In the less structured species S. louisianae, estimates
suggest overall eastward gene flow (WGM to NGM and
NGM to SAC) to be 1.5× as strong as westward gene flow.
The patterns of asymmetric gene flow are robust to the
influence of effective population size (Nm versus pairwise
m) and in general, gene flow estimates tended to be east-
wards within the Gulf and northwards on the Atlantic
coast. However, 95% confidence intervals for most of the
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the percentages between adjacent sites were averaged. Drifter % are only shown for west-to-east and south-to-north, because percentages for the opposite direc-
tions were negligible (see figure 2). Abbreviations and colour code for each sampling region correspond to figure 1. (Online version in colour.)
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pairwise estimates show overlap, with the exception of H.
erectus SAC-NAC and H. zosterae WGM-NGM gene flow esti-
mates. To better characterize the posterior estimates of
asymmetric gene flow, we also present the posterior densities
of a compound parameter that is calculated as the difference
between east/north bound and west/south bound gene flow.
Posterior densities of directional migration (west/south
bound gene flow subtracted from east/north bound gene
flow) are shown in the electronic supplementary material,
figure S2, corroborating the previously described results for
H. erectus and S. floridae, as well as bi-directional gene flow in
S. louisianae. In both H. zosterae and S. scovelli, the species
which show less propensity for rafting owing to their ecology
and habitat preference, the posterior estimates of asymmetric
gene flow are centred more closely around zero, suggesting
low gene flow magnitudes.

This compound parameter further allows us to treat
asymmetric gene flow as a model comparison problem by
partitioning the space of this parameter into eastward (less
than 0.0) and westerward (greater than 0.0) models whereby
the posterior ratio approximates the Bayes factor given that
both directions have an equal prior probability. The table
in the electronic supplementary material, figure S2 presents
these posterior ratios and provides additional support for
migration following oceanic currents in H. erectus SAC-
NAC, and S. floridae NGMEGM-SAC, as well as S. scovelli
WGMNGEGM-SAC, although the magnitude of gene flow
in the latter species is low.
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4. Discussion
In this study, we used oceanographic drifter data to help
generate hypotheses of gene flow directionality and used
genomic data to test the hypothesis that gene flow is asym-
metric and follows ocean currents between populations
for those syngnathids that have been observed to be associ-
ated with Sargassum rafting. We inferred the population
structure and asymmetric gene flow in five co-distributed
syngnathid species (in one case a sister-species pair) based
on genome-wide SNP datasets. We viewed these gene
flow estimates in the context of ecological traits, such as habi-
tat preference and rafting propensity. Our results generally
support asymmetric gene flow concordant with oceanic
transport via rafts (such as Sargassum) that depend on
ecological constraints.

Detailed ocean circulation data have become a usefulmeans
to generate hypotheses about the potential directionality of
ocean current-driven dispersal and colonization [3,34–37]
which can be further evaluated with genetic data [38–43].
Additional population-genetic-based approaches of marine
species dispersal have proved informative in demonstrating
how oceanographic processes can influence the frequency of
larval exchange [38,44–48], and genetic structure and diversity
[45,49–54]. Meta-analyses of fish species have been conducted
to correlate various life-history traits with distribution data as
drivers of dispersal capacity [15,55,56], with some studies
suggesting that seascape features are more important than
dispersal traits [57]. Our comparative study is, to our knowl-
edge, the first one to use empirical ocean transport estimates
jointly with genome-wide population genetic data across par-
tially co-distributed species. We find that both ocean currents
and dispersal traits can jointly explain the directionality and
magnitude of marine dispersal.

(a) Phylogeographic breaks in marine species around
the Florida peninsula

Studies on population structure inmarine species spanning the
Florida peninsula have described a strong phylogeographic
break coinciding with the Florida peninsula in some species,
yet absent in others [58–60]. Based on these observations,
Avise [58] proposed that the Florida peninsula acted as a
strong barrier during prolonged Pleistocene cooling periods
and associated lower sea levels for a large swath of this regional
marine biota. By contrast, others discoveredwidely distributed
marine species with little divergence across the Florida penin-
sula, implying that the generality of this regional cryptic
divergence breaks down when considering taxa with strong
dispersal capabilities and/or those that experienced local
extinction followed by recent trans-regional recolonization
events [61,62]. With regards to the species studied here,
only in H. erectus and S. fuscus/S. scovelli does the deepest
phylogenetic split coincide with the Florida peninsula.
In both of these cases, the gulf populations are more strongly
delineated from Atlantic coast populations by an area near
Cape Canaveral on the outer coast, an observation in line
with a number of other marine datasets presenting this ‘Atlan-
tic/Gulf’ phylogeographic break [58,63–66]. This break is also
consistent with the previous genome-wide population genetic
study of S. scovelli that used a much larger sample of individ-
uals [67], although a divergence with a gene flow model was
not considered.
(b) Population structure and divergence
Results from PCA, sNMF and SPLITSTREE were used to dis-
tinguish a number of populations and their phylogenetic
relationships for downstream model-based inferences of
demographic history. Considering the genetic distance of the
FK population in S. floridae, we hypothesize that samples
from this site are from a cryptic species that should not be con-
sidered a population of S. floridae (although demonstrating this
would require further detailed investigation). Interestingly, this
pattern of strong divergence is not retrieved from the mito-
chondrial DNA data, because this pattern was not detected
when confirming species identification using cytochrome oxi-
dase subunit 1 or cytochrome b (electronic supplementary
material, Information S1). The data suggest that H. zosterae
and S. floridae are qualitatively congruent with respect to diver-
gence histories. In both, the oldest intra-specific divergences
are between the WGM populations and populations further
to the east. The Gulf lacks hard allopatric barriers, yet diver-
gence between WGM and populations further to the east
(notably in H. zosterae and S. floridae) may be suggestive of a
persistent area of unsuitable habitat between the northern
Texas coast and east of the Mississippi river delta [68]. This
was confirmed by a comprehensive study of Atlantic syng-
nathids that reported a near absence of individuals from
northern Texas west of the Mississippi river delta [21]. By con-
trast, H. erectus and the S. scovelli/S. fuscus sister-species pair
are congruent with respect to a different divergence history,
whereby the oldest split occurs between north Atlantic popu-
lations and a nested pair of southern populations on either
side of the Florida peninsula that were split at a younger
date.While the relative topological splitting pattern is identical
between these two taxa, the divergence times are generally
much younger in H. erectus than S. scovelli/S. fuscus. Finally,
S. lousianae does not exhibit a clear population structure, with
onlymoderate divergence of the populations east of the Florida
peninsula (SAC) from the ones further to the west, and a very
recent estimated divergence time.
(c) Directional gene flow and magnitude predicted by
rafting propensity and habitat association

All of our focal taxa have a near shore benthic affinity to
sheltered habitat such that dispersal between habitat
patches is mainly mediated by rafting [20]. While the par-
tially overlapping distributions of the five taxa could imply
similar demographic histories and patterns of population
connectivity, there are also ecological differences in shoreline
habitat preference, macroclimatic tolerances, and rafting
propensity that may contribute to trait-based differences
in phylogeographic inference [4,19–22,69]. Based on this,
we predict higher and more asymmetric gene flow, and
younger divergence times in H. erectus, S. floridae and
S. louisianae which have higher empirical rafting observations
[4,20–22,69]. This is especially notable in S. louisianae, which
has been observed to rely on Sargassum [22]. Based on
recent catch records of 25 fish species inhabiting Sargassum
off of the coast of Texas, S. louisianae made up 1096 of the
10 518 individuals collected [22]. Results from the genomic
analyses presented in this study indeed show low regional
population divergence and an asymmetric eastward gene
flow in S. louisianae. Stronger population structure, but also
a stronger eastward gene flow is observed in H. erectus, and
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in S. floridae gene flow towards the northern populations
(NAC) is more pronounced.

In line with lower rafting propensity and different habitat
preferences, we expect the dwarf seahorse H. zosterae and the
euryhaline pipefish S. scovelli to exhibit older divergence times,
lower gene flow magnitudes and gene flow directions that are
less consistentwith ocean currents. Indeed, for both taxawe esti-
mate low levels of gene flow, no distinct patterns of asymmetric
gene flow, and divergence times substantially older than those
found in the three taxa with higher rafting propensities. Specifi-
cally,H. zosterae has a strong associationwith seagrass beds [70],
while S. scovelli/S. fuscushas a preference for shallow near shore
habitats [21,71]. TheS. scovelli/S. fuscus sister-species pair, unlike
other pipefishes included in this study, possesses specific micro-
habitat adaptations, including the ability to breed in freshwater
and inhabit shallownear shore habitatswith low salinity [21,71].
Another distinction from its congeners is that S. scovelli has not
been recorded from depths greater than 6.1 m [21]. It, therefore,
remains outside of the range of the oceanographic drifter data
used in this study, which do not depict the hydrodynamic pro-
cesses impacting this species’ near shore migration. Moreover,
a recent population genetic study concluded that individuals
which migrate from coastal populations into estuaries and
bays may be less prone to migrate seaward [71], which may
further reduce rafting-driven connectivity between populations
for this species.

Gaining insight into specific habitat requirements and the
role of rafting for dispersal of these species is of additional
importance considering the rapid loss of seagrass habitats on
a global scale, and local peaks of seagrass die-offs specifically,
e.g. around Florida [72]. At the same time, extreme blooms of
Sargassum have also been reported, with 2018 the first instance
of year-round Sargassum blooms in the Caribbean Sea, and
most recently ‘the biggest seaweed bloom in the world’ [73].
Because of the potentially detrimental ecological (and econ-
omic) consequences [74,75], there is an increasing effort to
monitor and predict these Sargassum blooms with satellite-
based remote sensing [76–78], tracking and modelling their
movement [9,79,80]. In order to evaluate the effects of these
blooms, it is crucial to understand the drivers, as well as the
ecological connections with species associated with Sargassum
[79]. Seahorses and pipefishes have been suggested as keystone
species to assess seagrass communities and aid in the design of
marine protected areas [81], thereby representing important
indicator species for the status of their habitat.
5. Conclusion
In marine systems, the use of genomics can contribute to
insights into the complex nature of divergence and connec-
tivity among populations. Our results suggest that active
dispersal ability and habitat preference, coupled with oceanic
transport, may play an important role in the asymmetric
connectivity of rafting western Atlantic syngnathid species.
Inference of post-divergence gene flow supports the hypothesis
that Sargassum transport by ocean currents may drive the
directional connectivity for taxa with higher observed rafting
propensity (H. erectus, S. floridae and S. louisianae), while the
effect of ocean currents is less pronounced in taxa with lower
rafting propensity and habitat preferences consistent with
lower dispersal (H. zosterae and S. scovelli/S. fuscus). This
study demonstrates that demographic parameter estimates
derived from genomic data, coupled with ocean circulation
data, can be a powerful tool for understanding the drivers
of regional variation in genetic diversity and population
connectivity of marine organisms [26,80].
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